A Novel Data Representation Strategy for Wavelet Image Compression

نویسندگان

  • Bing-Bing Chai
  • Jozsef Vass
  • Xinhua Zhuang
چکیده

Recent success in wavelet image coding is mainly attributed to recognition of the importance of data organization and representation. Several very competitive wavelet coders have been developed, namely, Shapiro's embedded zerotree wavelets (EZW), Servetto et al.'s morphological representation of wavelet data (MRWD), and Said and Pearlman's set partitioning in hierarchical trees (SPIHT). In this paper, we develop a novel wavelet image coder called signi cance-linked connected component analysis (SLCCA) of wavelet coe cients that exploits both within-subband clustering of signi cant coe cients and cross-subband dependency in signi cant elds. Extensive computer experiments show that the proposed SLCCA outperforms all three aforementioned wavelet coders. For example, for the \Barbara" image, at 0.50 bpp SLCCA outperforms EZW and SPIHT by 1.75 dB and 0.89 dB in PSNR, respectively. It is also observed that SLCCA works extremely well for images with large texture regions. For eight typical 256 256 grayscale texture images compressed at 0.40 bpp, SLCCA outperforms SPIHT by 0.32 dB{ 0.70 dB. This outstanding performance is achieved without any optimal bit allocation procedure. Thus both the encoding and decoding procedures are fast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of VlSI Based Image Compression Approach on Reconfigurable Computing System - A Survey

Image data require huge amounts of disk space and large bandwidths for transmission. Hence, imagecompression is necessary to reduce the amount of data required to represent a digital image. Thereforean efficient technique for image compression is highly pushed to demand. Although, lots of compressiontechniques are available, but the technique which is faster, memory efficient and simple, surely...

متن کامل

Wavelet Transformation

Wavelet transformation is one of the most practical mathematical transformations in the field of image processing, especially image and signal processing. Depending on the nature of the multiresolution analysis, Wavelet transformation become more accessible and powerful tools. In this paper, we refer to the mathematical foundations of this transformation.   Introduction: The...

متن کامل

Intelligent scalable image watermarking robust against progressive DWT-based compression using genetic algorithms

Image watermarking refers to the process of embedding an authentication message, called watermark, into the host image to uniquely identify the ownership. In this paper a novel, intelligent, scalable, robust wavelet-based watermarking approach is proposed. The proposed approach employs a genetic algorithm to find nearly optimal positions to insert watermark. The embedding positions coded as chr...

متن کامل

Planelet Transform: A New Geometrical Wavelet for Compression of Kinect-like Depth Images

With the advent of cheap indoor RGB-D sensors, proper representation of piecewise planar depth images is crucial toward an effective compression method. Although there exist geometrical wavelets for optimal representation of piecewise constant and piecewise linear images (i.e. wedgelets and platelets), an adaptation to piecewise linear fractional functions which correspond to depth variation ov...

متن کامل

MEDICAL IMAGE COMPRESSION: A REVIEW

Within recent years the use of medical images for diagnosis purposes has become necessity. The limitation in transmission and storage space also growing size of medical images has necessitated the need for efficient method, then image Compression is required as an efficient way to reduces irrelevant and redundancy of the image data in order to be able to store or transmits data. It also reduces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997